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ABSTRACT. An analysis of the FIAC data is presented using spatial wavelet processing.
This technique allows the image to be filtered adaptively according to the data itself,
rather than relying on a predetermined filter. This adaptive filtering leads to better
estimation of the parameters and contrasts in terms of mean squared error. It will be
shown that by introducing a slight bias into the estimation, a large reduction in the
variance can be achieved, leading to better overall mean squared error estimates. As no
single filter needs to be preselected, results containing many scales of information can be
found. In the FIAC data it will be shown that both small scale and large scale (smoother,
more dispersed) effects occur. The combination of small and large scale effects detected

in the FTAC data would be easy to miss using conventional single filter analysis.
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1. INTRODUCTION

The Functional Imaging Analysis Contest (FIAC) at Human Brain Mapping 2005 pro-
vided those interested in methodology a unique opportunity to showcase the latest forms of
analysis available for functional Magnetic Resonance Imaging (fMRI) data. As can be seen
in the other papers in this issue, there are many and varied techniques for this analysis.
This particular paper examines a recent mathematical methodology, wavelets, adapted
for use in neuroimaging (Ruttimann et al. 1998; Turkheimer et al. 2000; Turkheimer
et al. 2003), which is steadily gaining popularity.

The techniques used in the FIAC could be broadly categorised into three different
classes. Firstly, there are the temporal models, which primarily focus on the task of
temporally modelling the fMRI time series. The second class is that of spatial models, of
which the method proposed here is an example. These tend to use more standard temporal
models, although usually any temporal model can, in principle, be used. The temporal
models are combined with spatial techniques to enhance the signal and allow deductions
to be made based on spatial information in addition to the temporal information. The
third class is that of spatio-temporal models, where both the time and space elements of
the data are modelled simultaneously and often non-parametrically. Intrinsically all three
classes deal with spatio-temporal data, the distinction really concerns the separation or
not of the spatial and temporal processing.

Wavelets are a recently introduced mathematical tool for the treatment of signals with
non periodical behaviour (e.g. a hammer blow, an airplane flyover noise). Compression
formats based on wavelets, such as the new JPEG2000 (Taubman and Marcellin 2001),
are very efficient in dealing with not only pictures but also text (that can be seen as a set
of local bursts of signal on a white canvas). The counterpart of the wavelet transform is
the Fourier transform that achieves optimal encoding of periodic signals (e.g. radiowaves).
The use of wavelets for data encoding, transmission and compression is now pervasive in
many fields such as the military, astronomy, and medical electronics.

As mentioned, the wavelet techniques used in this paper will be concerned with spatial
modelling. A spatial transform of the data will be taken and this transform will be
analysed to produce the underlying parameter estimates associated with the tasks under

investigation in the FIAC data set. Wavelets have underlying properties which allow the
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enhancement of signal to noise ratios in certain classes of signal, and fMRI data happens
to be well represented in these classes.

There are many papers on the virtues of using wavelets in neuroimaging in a spatial con-
text (Ruttimann et al. 1998; Turkheimer et al. 1999; Turkheimer et al. 2000; Turkheimer
et al. 2000; Cselenyi et al. 2002; Turkheimer et al. 2003; Miiller et al. 2003; Van De Ville
et al. 2004; Aston et al. 2005). There is also a large literature on the use of wavelets
in the temporal dimension (see Bullmore et al. (2003) for a review of both spatial and
temporal wavelet methodology in neuroimaging). We will not attempt to give a lengthy
technical discussion of the merits of using wavelets, but rather refer the interested reader
to the previous references and those contained therein. It is our purpose to explain the
basics of wavelet analysis, its intrinsic advantages, and how wavelets can be used easily.
This will be demonstrated through the use of the FIAC data sets. In addition, it will
be shown how the results of the wavelet analysis differ from some of the other standard
analyses often used in the examination of neuroimaging data.

The rest of the paper is organised as follows. A brief introduction to spatial wavelet
analysis in neuroimaging is given, followed by the methodology, including preprocessing,
that was undertaken on the FIAC data. The details of the alternative methods of analysis
that were compared will also be included here. The results of the analysis will then
be given, and finally some concluding remarks on both the applicability of the wavelet

techniques to the FIAC data and their suitability for application in other contexts.

2. WAVELET ANALYSIS

There are many good expositions of the mathematical derivation of wavelets includ-
ing Mallat (1999), Vidakovic (1999) and Percival and Walden (2000). Therefore, these
derivations and underlying methods will not be reproduced here, but rather a description
of wavelet methodology specific to neuroimaging data will be given. The intention is not
to provide a rigourous exposition of wavelet techniques, as excellent examples of these
can be found in many of the papers referenced in the introductory section, but rather
to provide a framework for intuitive understanding of the role that wavelets play in the

analysis for those who prefer a less technical description.
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fMRI data can be thought of as a four dimensional data set - three spatial dimensions
and one temporal dimension. While a wavelet transform can be taken of any of these
dimensions, three dimensional spatial transforms will be of interest in this paper. Spatial
transforms operate in each of the spatial dimensions. This is usually through transforms
that operate separately on each dimension, although techniques which combine dimensions
have also recently been introduced in image processing and neuroimaging (Van De Ville
et al. 2005). Figure 1 illustrates the transform in three dimensions. This is a two-level
transform. Firstly, a high and low pass filter are applied to the data in each dimension,
giving eight possible combinations of filtering (HHH, HHL, HLH, HLL, LHH, LHL, LLH,
LLL). These are indicated by the eight resulting blocks. The transform is then applied
again to the block of data (now half the size in each dimension) that corresponds to the
LLL filter combination, resulting in a further eight blocks, as can be seen in the second
level transform in the figure. This can be carried on until there is no more data to filter
(given that the data dimension size was a power of two in each dimension). In practice,
in neuroimaging it is assumed that only signal is present after a small number of filtering
steps (levels), often taken to be about four.

It is well known in neuroimaging that when trying to estimate a signal of a known width,

the width of the filter to be used should match that of the signal (Worsley et al. 1996).
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However, in practice, the signal in neuroimaging is usually of an unknown size and may
occur in different places with different sizes, making it difficult to choose any one specific
filter. This problem has been known for some time and methods have been proposed to
overcome it (Worsley et al. 1996). Wavelets offer an alternative “data driven” filter size.
Each resolution, or level of decomposition, corresponds to a different filter size. Each
wavelet coefficient can then be tested as to whether that coefficient is signal or noise,
and appropriate steps based on this test can then be taken (see below). This can be
viewed as a spatially adaptive model where the data helps determine which filter should
be associated with each area.

There are other advantages of transforming the data using the wavelet transform. The
properties of the wavelet transform allow more informed modelling of the data as signal
tends to be represented by a small number of coefficients whereas the noise tends to
be spread evenly throughout the wavelet coefficients. This is even true when the noise
is correlated in the image domain. As can be seen in Figure 2, the wavelet transform
can decorrelate the data. Here simulated noise was generated with a 6mm Gaussian
FWHM. This is often assumed to be the underlying spatial correlation structure in an
fMRI data set. As can be seen, the image space correlation function is a 6mm Gaussian
kernel. However, when the data is transformed into wavelet space, the correlation between
wavelet coefficients is significantly reduced, and thus many statistical procedures which
would be difficult to perform on correlated data can now be performed on these essentially
uncorrelated wavelet coefficients.

The two properties above lead to the most significant part of the wavelet analysis.
Having performed a wavelet transform of the data, direct application of the inverse wavelet
transform returns the original data. Indeed, even if linear temporal modelling is performed
(such as the general linear models popular in SPM (Ashburner et al. 1999) and other
packages), and the subsequent parameter estimates transformed with the inverse wavelet
transform, the resulting image space estimates will be identical to those estimates obtained
using the same general linear model in image space, as if the wavelet transform was
never performed. However, the decorrelation and sparse representation properties of the
wavelet transform allow a thresholding step to be undertaken before the return inverse

transformation of the parameters.
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FicURE 2. Simulated Gaussian 6mm noise image and the corresponding
estimated spatial correlations in image space and wavelet space. As can be

seen, the wavelet space has greatly reduced correlation.

Thresholding the wavelet coefficients allows the estimates back in image space to have
different properties compared with those of the underlying linear model. The temporal
linear models of the type used in SPM are concerned with unbiased estimation. This,
in effect, means that on average the estimated parameter will be the true value (given
that the assumptions of the model are true). Indeed, the estimates obtained from these
linear models are the “best linear unbiased estimates”, meaning that the variance of these
estimates is minimal for all linear estimators that give unbiased estimates. However, there
are different metrics for measuring whether an estimate is good or not. An alternative
metric is that of Mean Squared Error (MSE) (Rice 1995). Here, both the bias of the
estimate and the variance of the estimate are taken into account and their combined total
(bias? + variance) is compared. An estimator is said to be better if the MSE is less than

another estimator. This can be simply thought of in terms of a target.
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a)

In the first target (a), the overall average is unbiased (ie is in the centre) but the individual

b)

estimates can be a long way from the centre itself, whilst in the second target (b), the
average of the estimates is no longer the centre of the target (ie the estimates are biased)
but each of the individual estimates is close to the centre of the target. Using an MSE
metric, the second estimator would be characterised as better than the first estimator
even though the second is a little biased. Indeed SPM firstly smooths the data to try to
gain better MSE estimates and then uses linear models to fit the data, however wavelet
analysis provides adaptive smoothing compared with the fixed kernel smoothing of SPM.
A large reduction in variance can be achieved using a large width filter, but this will lead
to large bias.

Wavelet thresholding works on the principle of trying to find estimates that improve the
MSE of the parameters. Different thresholding schemes can be used, such as non-linear
thresholding, where a wavelet coefficient is kept or removed depending on whether it is
deemed to contain signal, or linear shrinkage, where the wavelet coefficients are shrunk
towards zero depending on the level of noise they contain. Depending on the data and
the underlying signal under investigation, different thresholders will have better or worse
MSE properties. In the analysis of the FIAC data, linear shrinkage was used, as it has
been shown to have better MSE properties for neuroimaging data than either unbiased
estimators or those of non-linear thresholders (Turkheimer et al. 2003).

Until recently, it had not been possible to obtain estimates of the variance or statistics of
the parameters after the wavelet analysis. However this problem has now been alleviated
in different ways (Van De Ville et al. 2004; Aston et al. 2005), and there are now
quantifiable error components associated with these estimates.

The above ideas lead to the following implementation (available in the PhiWave toolbox
for SPM). Figure 3 gives the schematic for the analysis. The input data for the analysis

is the result of standard spatial preprocessing, but omitting the final stage of spatial



WAVELET ANALYSIS OF FIAC DATA 8

IMAGE SPACE (p_WAVE WAVELET SPACE

Images WT
-~ Filter ? %
» v;-‘;} (threshold) Par Image Residuals

Parametric Variance
Map Map

' Par Image ReSIduaIs

FiGURE 3. PhiWave - Schematic of the underlying methodology for the

PhiWave analysis

smoothing that is common in voxel-based analyses. Firstly, the wavelet transform of
the original preprocessed data is taken. We refer to the wavelet transformed data as
being in wavelet space. The resulting wavelet coefficients are then temporally modelled
using standard methods, and the associated parameter estimates, their error variances,
and residuals are calculated. Using these estimates and error variances in wavelet space,
thresholding of the parameters is carried out, as is thresholding of the residuals. The
parameters and residuals are then transformed back to the image domain using the inverse
wavelet transform to recover parametric images and variance maps in the original image
space (Aston et al. 2005).

We implement random effects (cross-subject) analyses using the same approach as stan-
dard voxel-based packages: the input images are contrast images from a preliminary single
subject analysis for each subject. The images can be the wavelet space unthresholded con-

trast images from a first level wavelet analysis as above. Note that we obtain an identical
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set of images from taking the wavelet transform of the contrast images from a voxel-based
analysis that has used unsmoothed data.

Here we describe our own implementation of spatial wavelet analysis, instantiated in
the PhiWave toolbox. We should also note that there is an excellent alternative method
for doing spatial wavelet analysis — WSPM — that is also available as an SPM toolbox.
WSPM is based on the methods determined in the paper by Van De Ville et al. (2004).
While the principles are a little different from those in this paper and the schematic of
the Van De Ville et al. approach would vary slightly from ours (including methods to
generate p-values back in the image domain), the overall methodology is again aiming to

take advantage of the signal representation properties of the wavelet transform.

3. METHODOLOGY FOR FIAC Data

In order to compare the results of the PhiWave wavelet analysis with a voxel-based
method, we have analysed the FIAC data using a standard PhiWave procedure and a
standard SPM2 procedure. The experimental paradigm can be found in the first paper in
this issue (Dehaene-Lambertz et al. 2006). The spatial preprocessing is identical for the
two analyses, and was also based on SPM2, as the PhiWave toolbox imports the results
of SPM preprocessing. Thus the preprocessing procedure documented here is not specific
to the PhiWave analysis, and is applicable to any data set with the components contained
in the FTAC data set.

For simplicity, we only present results for the block version of the experiment. The

event related version can also be analysed in a similar fashion.

3.1. Preprocessing. We have described the preprocessing for these data at http://
phiwave.sourceforge.net/fiac/; this page includes batch scripts to reproduce the
analysis. In what follows we refer to subjects using the subject numbers given by their
directory in the data provided. For example, the first subject will be fiacO.

First, we excluded session 3 for subject fiac10 as the notes for the dataset commented
that the subject was asleep during this session.

All the time series were reviewed with the tsdiffana utility http://www.mrc-cbu.cam.
ac.uk/Imaging/Common/downloads/SPMUtils/tsdiffana.tar.gz. This found a large

number of high variance spikes within subject fiac8 and this subject was excluded from



WAVELET ANALYSIS OF FIAC DATA 10

subsequent analysis. The data sets were then corrected for slice timing effects, and cor-
rected for EPI distortion using the Fieldmap toolbox http://www.fil.ion.ucl.ac.uk/
spm/toolbox/fieldmap/. As subjects fiacO, fiach, and fiac11 did not have fieldmaps,
these were also eliminated from subsequent analysis. The remaining data sets were then
realigned and unwarped with the Unwarp toolbox http://www.fil.ion.ucl.ac.uk/spm/
toolbox/unwarp/. We segmented the anatomical image for each subject into gray mat-
ter, white matter and CSF, and normalised the resulting definition of gray matter to the
gray matter MNI template. We then resliced the EPI images to match the template using

the normalisation parameters.

3.2. Statistical analysis in SPM2. For the SPM http://www.fil.ion.ucl.ac.uk/
spm/ analysis, additional 5mm Gaussian spatial smoothing was performed on the data for
single subject analysis, and 10mm Gaussian smoothing for the random effects analysis.
We set up a model by defining the five conditions given in the documentation for the

data:

e Same Sentence-Same Speaker (SSt_SSp): a given sentence said by the same speaker
was repeated six times;

e Same Sentence-Different Speakers (SSt_DSp): a given sentence was repeated by
six different speakers (3 males and 3 females);

e Different Sentences-Same Speaker (DSt_SSp): a given speaker produced six differ-
ent sentences;

e Different Sentences-Different Speakers (DSt_-DSp): Six different speakers (3 males
and 3 females) produced six different sentences.

e First Sentence in each block (FSt).

We modelled the events from each condition using the standard SPM HRF (Haemody-
namic Response Function) method, which generates one regressor for each event, where
each regressor consists of delta functions at the time of each event onset convolved with
the standard HRF. To this model we added 6 columns of movement parameters (transla-
tions and rotations relative to the first scan in the session), giving 11 columns of regressors
per session. We used a 120 second high pass temporal filter, and ordinary least squares

estimation was used in the data fitting.
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If we then use the condition labels to refer to the parameter estimates for the regressor
for that condition, we can express the main effect of Sentence in the usual way with this
contrast: (DSt_DSp + DSt_SSp) - (SSt_-DSp + SSt_SSp). The main effect of Speaker
is given by (DSt_DSp + SSt_DSp) - (DSt_SSp + SSt_SSp), and the interaction can be
expressed by (DSt_DSp - DSt_SSp) - (SSt_DSp - SSt_SSp). One possible interpretation
of a positive value for such an interaction could be that there is a greater (more positive)
difference between same and different sentences when the speaker also changes than when
the speaker stays the same. The contrasts here could be expressed differently or expanded
to include those with repetition priming from the first sentence, but as the main interest
is that of differential response to speaker and sentences, these will not be reported.

We initially applied the default SPM intensity threshold masking for the SPM analy-
sis. This has the effect of cutting off the activation signal near the edges of the brain.
Therefore, it was deemed better not to apply the masking, even though this was a slight
departure from the default standard analysis. Thus the data was reanalysed using only
a mask of voxels within the template brain and without threshold intensity masking and

these are the SPM analyses presented here.

3.3. PhiWave Analysis. The PhiWave analysis consists of selecting a saved SPM model,
and estimating this in wavelet space. Thus the temporal model for the PhiWave analy-
sis was identical to the SPM2 model used. PhiWave automatically transforms the un-
smoothed image data into wavelet space, before estimating the temporal model. Battle-
Lemarie wavelets, a class of wavelet functions which have been shown to be good for
neuroimaging signals (Turkheimer et al. 2000), were used in the transform. Four levels of
decomposition were used; the elements in the lowest — and smoothest — level (known as
approximation coefficients) were not subject to thresholding, as all these were regarded to
be signal. After the estimation of the temporal model, all of the other wavelet coefficients
(detail coefficients) were subjected to Stein linear shrinkage as shown in Turkheimer et al.
(2003). The procedure for estimating variance maps in Aston et al. (2005) was also

applied. These steps are summarised in the schematic of Figure 3.
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4. RESULTS

It should be first noted that most of the results were consistent between the two meth-
ods of analysis. This is not particularly surprising, as they are both using parameters
determined from the same temporal linear model, and while the spatial smoothing dif-
fers, both have previously been shown to model the data well. To illustrate the results
of PhiWave analysis compared to SPM, we used the FSt (first sentence) contrast, as we
were expecting strong bilateral activation in the auditory cortex at the single subject and
random effects levels. We next show the results of the main effects and interaction of the
Sentence and Speaker factors. All results are shown in neurological convention.

Figure 4 shows the contrast estimates for both the SPM and the PhiWave analysis for
the contrast of first sentence against rest for a single subject while Figure 5 gives the
same images for a random effects analysis. We simply used the first retained subject
in the analysis (fiacl) as the example single subject. As can be seen, and as expected,
there are large effects bilaterally in the auditory cortices, in both single subjects and also
in the overall combined random effect analysis. It can also be seen that there are only
small differences in the effects map (top images) between the two analysis methods in this
case. The main advantage of using the wavelet shrinkage methods is to improve mean
squared error. As can be seen in Figures 4(middle) and 5(middle), this is achieved by a
large reduction in the variance from the standard analysis to the wavelet analysis. This
reduction (in terms of standard deviation) was about 40% for the single subject analysis
and 25% for the random effects analysis, on average across the brain. These reductions in
variance were consistent or greater across all contrasts not just the first sentence versus
rest contrast.

The pseudo t-statistics for the single subject analysis can also be calculated (Figure
4(bottom)) and as can be seen, the wavelet statistics are similar to the t-statistics from
the standard analysis. There is slightly more structure present in the map from the
wavelet analysis, as the smoothing has been adapted to the data, rather than using a
predefined filter.

In Figure 6, the main effects of speaker and sentence type are compared. It can be
seen that while there is little main effect of speaker, there is a pronounced left-sided

effect in response to same sentences versus different sentences. These findings were also
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FIGURE 4. Single Subject Images for (left) PhiWave and (right) SPM2.
This is the contrast of first sentence versus rest. (top) effect (middle) std of
effect (bottom) (pseudo)-t statistic. As can be seen there is clear activation
in the auditory cortex as expected. There is also a large reduction of the
variance when using the wavelet transform compared with the standard

SPM2 analysis.

13
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Ficure 5. Random Effect Images for (left) PhiWave and (right) SPM2.
This is the contrast of first sentence versus rest. (top) effect (middle) std
of effect (bottom) (pseudo)-t statistic. As can be seen there is clear activa-
tion in the auditory cortex; this is also seen in the single subject analysis.
There is a large reduction of the variance when using the wavelet transform

compared with the standard SPM2 analysis.

14
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FIGURE 6. Random Effect Images (effect size) for (left) PhiWave and
(right) SPM2 for the main effects of interest (top) DSt-SSt and (bottom)

DSp-SSp. As can be seen, there is little effect of different speakers, but
there is a large left sided effect for different sentences versus same sentence.

These findings were consistent between both methods of analysis.

observed in the standard analysis, although the pattern was less smooth. Given the nature
of the random effects analysis, smoother results might be deemed more appropriate, as
there is generally considerable anatomical variance across subjects after standard spatial
normalization.

For some contrasts, the results were not completely consistent between the two types
of analysis. This can be most clearly seen in the random effects analysis of the interaction
between the main effects of speaker and sentence type, which is shown in Figure 7. Both
analyses pick out local effects of interaction, but in the PhiWave analysis, there are, in

addition, more disperse, smoother effects that are not clearly seen in the SPM analysis.
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FIGURE 7. Random Effects Images (effect size) for (left) PhiWave and
(right) SPM2 Output for the effect of Interaction. There is a large difference
between the two methods of analysis. While both show localised effects,
there are also large scale effects shown in the PhiWave analysis which are

not obvious in the SPM2 analysis.

The PhiWave analysis identifies an interesting network of areas in the ventral visual
stream and supplementary motor area, as well as ventral and medial prefrontal cortex.

This would imply that different speakers did modulate the responses to the sentence type
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over rather large areas, rather than a few sharply-defined locations. A fixed width 10mm
smoothing kernel was used in the SPM analysis, while the wavelet analysis adapted the
smoothing to the data and therefore was able to reconstruct both small and large scale

signals efficiently.

5. DISCUSSION

In this paper, a practical analysis of the FIAC data has been performed using the
wavelet techniques which make up the PhiWave analysis package. It has been shown
that dramatic reductions in the variance of the contrasts can be achieved through the
use of wavelet shrinkage. As the amount of shrinkage is determined from the data, the
methodology can be seen to be data adaptive. This is different from standard techniques
where the amount of filtering is predetermined before the size of the underlying signal is
known.

The differences in the approach to filtering can lead to differences in the estimation of
the effects, and this was most noticeable here in the FIAC data in regard to the random
effect maps. The standard analysis found effects that were somewhat localised, whereas,
the PhiWave analysis estimated both localised and also smoother more dispersed effects.

It should be remembered that when using analysis based on trying to minimise an MSE
criterion, the subsequent estimates of the effects may be biased. This can be noticed in
the differing ranges for the SPM and wavelet analysis. For wavelet analysis, the size of the
effect is reduced, but this gains the advantage that the variance is also greatly reduced.
As can be seen, the statistic images are on similar ranges, even though the effects are
different sizes, due to the shrinkage steps used to reduce the variance.

Wavelet analysis in the spatial domain provides a powerful tool to search for signals
of unknown sizes. The enhancement of analysis provided by these techniques will allow
neuroscientists to understand the brain on many scales, as the data no longer needs to be

considered using only one size of filter.
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WEBSITE

The associated PhiWave software for use with SPM (as an SPM toolbox) can be found

at the following site

http://phiwave.sourceforge.net
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