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Abstract

A new method is introduced for the analysis of multiple studies measured with emission

tomography. Traditional models of statistical analysis (ANOVA, ANCOVA and other linear

models) are applied not directly on images but on their correspondent wavelet transforms.

The maps of model effects estimated from these models are filtered using a thresholding

procedure based on a simple Bonferroni correction and then reconstructed. This procedure

inherently represents a complete modeling approach and therefore obtains estimates of the

effects of interest (condition effect, difference between conditions, covariate of interest etc)

under the specified statistical risk. By performing the statistical modeling step in wavelet

space, the procedure allows the direct estimation of the error for each wavelet coefficient;

hence the local noise characteristics are accounted for in the subsequent filtering. The method

was validated by use of a null dataset and then applied to typical examples of neuroimaging

studies to highlight conceptual and practical differences from existing statistical parametric

mapping approaches.

Running Title:  Statistical Modeling of PET images in wavelet space.

Keywords: wavelets; statistical analysis; statistical parametric map; estimation;

Positron Emission Tomography; Single Photon Emission Computed

Tomography.
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INTRODUCTION

This article concludes a trilogy of papers devoted to the use of the wavelet transform (WT)

for the spatial modeling of images obtained with emission tomography (ET).

The first of the series (Turkheimer et al., 1999) described a unified framework for the analysis

of single emission images and derived statistical maps in stationary noise conditions

(homogeneous variance).

The second one (Turkheimer et al., 2000) considered the spatio-temporal modeling of

dynamic ET studies and developed a combined application of kinetic modeling and WT that

allowed the optimal estimation, in the least square sense, of parametric maps in nonstationary

noise conditions (heterogeneous variance).

This article builds upon this bulk of work and develops a framework for the statistical

analysis of multiple ET images in nonstationary noise conditions. As it will be clear in the

next sections, the theoretical basis of such method already reside in the previous two

manuscripts. Therefore the  purpose of the following sections is to clarify the use of the WT

for this particular application and highlight the conceptual differences between current

approaches in image space and WT methods. This task is pursued by both theoretical means

and by applications to real data-sets.

S TATISTICAL MODELING IN IMAGE S PACE

Let Y(s,i) be a set of ET scans indexed by i where s: s=(sx,sy,sz)∈N3
 spans the pixels of the

digitized images. In general i: i=(k,h,j)∈N3
 as Y(s,i) may be measured in different conditions

(index j) in different subjects (index h) in repeated occasions (index k). Y(s,i) are acquired from

emission tomographs and reconstructed from sinograms or planar projections at their highest

resolution using back-projection with a ramp filter. It is useful to consider Y(s,i) as projected

in the same anatomical space so that each spatial coordinate s will correspond to the same

anatomical location for all images in the set.

The measurement of the set Y(s,i) is aimed to obtain inferences on the spatial distribution P(s)

of a certain parameter P that is a function of the conditions under which the data-sequence

was acquired.
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For example, in the case of cerebral blood flow (CBF) studies of brain function, the pattern of

interest P(s) is the difference in CBF between baseline and an activation condition. This

difference can be estimated by use of a general linear model (GLM) where the effect of each

condition is inscribed as an additive term and other effects of no interest (subject effects,

temporal effects, scans global counts etc.) are also included as additive terms or covariates

(Friston et al., 1995).

The mathematical relationship between the data and the effect of interest will be here

condensed into a function labeled κ(). κ() in ET is usually derived from linear models

(ANOVA or ANCOVA) where the set Y(s,i) is modeled in terms of conditions and covariates

related to i=(k,h,j) (Friston et al., 1995).

Alternatively, the model for the sequence Y(s,i) can be extracted from the data themselves in

the form of, say, a set of eigenvectors extracted from a Principal Component Analysis (PCA)

(Barber, 1980; Moeller et al, 1987; Friston et al, 1993); here, the pattern P(s) of interest is the

regional distribution of the contribution of each eigenvector to the pixel variance.

The application of κ() models the dependency of the data from the experimental setting and

accommodates the dimension of Y(s,i) indexed by i. However, a complete modeling approach

aims to the estimation of the parameter of interest, in  this case the pattern  P(s), and,  in

order to do this, all dimensions of the data must be considered. It is therefore is necessary to

model also the spatial dimension indexed by s.

Figure 1 sketches a common approach to such problem in neuroimaging. In the scheme,

spatial modeling is approached by two separate steps, filtering and statistical thresholding.

Filtering commonly consists in the application of mono-resolution filters (e.g. gaussian filters)

to produce the filtered set YF(s,i). However such simple modeling approach does not allow

any kind of control over the statistical properties, bias and variance, of the derived map P
^
(s)=

κ(YF(s)). Therefore such a map is usually accommodated in form of statistical parametric map

(SPM) where the parametric pattern P
^
(s) is normalized by correspondent estimates of its

standard error σ^ (s) to obtain a map of statistical scores (e.g. t scores, z scores etc.) (Friston et

al., 1991; Worsley et al., 1992). This is preliminary to the subsequent thresholding procedure

that consists of feeding the statistical scores into the appropriate cumulative distribution
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function Φ() that allows the control of the statistical risk of false positives in the entire SPM.

The correspondent p-value map is then derived as P
^

p(s) = 1-Φ(P
^
(s),σ^ (s)). Those coordinates

s where P
^

p(s) > τ  (τ is an operator selected threshold, usually 0.1, 0.05 etc.) are then

identified as those locations where parameter P has a statistically significant value. In order to

capture varying patterns of P(s), a number of Φ() have been proposed that are sensitive to

spatial distributions of the signal that range from focal and sparse to nonfocal and distributed

(Friston et al., 1994; Worsley et al., 1995). Alternatively, such sensitivity may be achieved

by iterating the filtering and thresholding steps at different resolutions where Φ() is derived in

order to obtain control of statistical risk over the searched scales (Poline and Mazoyer, 1994;

Worsley et al., 1996).

HYPOTHESIS TESTING VS. ESTIMATION

The scheme of Figure 1 is designed to obtain an estimate of the pattern P(s) with a controlled

statistical risk. However the final output is a probability map and not the pattern itself. Such

a map may be used to assess the location of statistically significant values of P(s) but not to

obtain a numerical estimate of its spatial distribution (Worsley, 1997; Turkheimer et al.,

1999). The reason for this lies in the incomplete modeling of the data; while the dimension i of

Y(s,i) is modeled by κ(), no model is used for the spatial dimension s. The use of a

monoresolution filter is sub-optimal as it cannot adapt to the spatially varying features of the

signal nor to the local signal-to-noise ratios.

S TATISTICAL MODELING IN WAVELET S PACE

One very general approach to the modeling of images consists of the use of a mathematical

transform that projects the data onto an appropriate functional space. Previous work (Unser

et al., 1995; Ruttiman et al., 1996, Turkheimer et al., 1999) showed that bases of smooth

wavelets are able to model efficiently the signal of images measured with positron emission

tomography (PET) and single photon emission computed tomography (SPECT). Besides, the

projection onto wavelet space is obtained through application of the dyadic wavelet

transform (DWT) (Mallat, 1989) that is a linear and orthogonal operator. Such properties can
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therefore be used for the spatial modeling of the data-set Y(s,i) by using the method showed in

Figure 2. In this scheme, every single frame of the data set is transformed by application of

the wavelet transform  to obtain  W(w,i) = WT(Y(s,i)). The application of the statistical model

through the operator κ() produces the parametric image in wavelet space P
^

wt(w) and

correspondent estimates of the standard error σ^ wt(w). Both P
^

wt(w) and  σ^ wt(w) are then passed

through a wavelet filter h() that thresholds each wavelet coefficient P
^

wt(w) proportionally to

its error σ^ wt(w) and accordingly to a certain statistical risk (see Turkheimer et al, 1999 for

details). By application of the inverse WT one obtain a final estimate of the parametric

pattern  P
^ F(s) = WT-1(P

^
wt
F (w)).

This sequence is identical in all aspects to the one used previously for the estimation of

parametric maps from dynamic ET scans (Turkheimer et al., 2000). In fact, the application of

a statistical model to a series of ET studies is in no way different from the application of any

other model, say a kinetic one, to a sequence of tomographic images. In both cases, the final

aim is the estimation of the pattern of the parameters  of interest.

The kinetic modeling of a dynamic ET acquisition  is used to recover the spatial distribution

of physiological indexes such as blood flow, metabolism, receptor density etc. (Phelps et al.,

1986) The statistical modeling of a series of PET images is used to  investigate the pattern

either of  variables (factors and covariates) relating to the conditions under which the scans

were made, or of linear combinations (contrasts) of such variables.

The only difference between the analysis of a dynamic scans and the analysis of multiple

scans is the statistical risk that characterizes the choice of filter h(). If P(s) is the pattern of a

physiological parameter one may be more interested in the mean squared error (MSE) (the

mean squared error is equal to the sum of the variance and squared bias) properties of the final

estimate (Turkheimer et al, 2000). Instead, when P(s) is the pattern of a certain measurement

related to a certain experimental condition then one is usually more interested in the control of

the variance of  P
^ F(s).

A number of wavelet filters exist in the statistical literature for each risk of choice. For

example the SURE filter (Donoho and Johnstone, 1995) has excellent MSE properties. On the

other hand variance control can be exerted by minmax filters (Donoho and Johnstone, 1994;
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1995) or by thresholding approaches that adopt multiple testing corrections like the

Bonferroni (Turkheimer et el., 1999).

The scheme in Figure 2 has been already discussed in detail (Turkheimer et el., 2000). The

previous manuscripts (Turkheimer et al., 1999; 2000) also contain background material on

wavelet bases, DWT and filtering procedures in wavelet space.

However, for the context of this paper, it is relevant to review the following aspects of the

methodology.

Firstly, the scheme illustrated in Figure 2 is a comprehensive modeling approach that uses

appropriate functional support for both dimensions s and i. In fact the outcome P
^ F(s) is a

parametric map and not a map of probabilities. Secondly, if the functional κ() is linear then,

given that the DWT is a linear and orthogonal operator, a solution P
^

wt
F (w) that is optimal

under a certain statistical risk in wavelet space will produce an inverse P
^ F(s) that is also

optimal under the same risk in image space (Turkheimer et al., 2000). Therefore such

procedure may have extensive use in the field of the analysis of ET images where linear

models are quite commonly used like GLM or PCA. Thirdly, noise processes in wavelet

space are spatially uncorrelated given the well known whitening properties of the DWT

(Turkheimer et al., 1999; 2000).  In this particular context, this means that, in order to control

the variance of the solution, any standard multiple hypothesis testing approach can be

efficiently used (Ruttiman et al., 1996). Note that, in image space, the control of error rates is

more difficult since the spatial correlation of the original images, or introduced by the filter,

has to be taken into account and methods then rely on Gaussian random fields theory (Adler,

1981) or randomization procedures (Poline and Mazoyer, 1994;  Holmes et al., 1996).

Finally,the scheme of Figure 2 allows the point-wise estimation of the noise process in

wavelet space σ^ wt(w) and is therefore able to handle the computational process in

nonstationary gaussian noise conditions typical of this kind of studies (Turkheimer et al.,

2000).

Filters that control the false positive rates were selected for the application section of this

paper in order to mirror common thresholding strategies in image space. The two properties

of risk equivalence between image and wavelet space and of noncorrelation of statistical
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scores indicate the use of a simple filter in the form of hard-thresholding operator defined, for

a wavelet coefficient d with error σ^  , as:

hhard(d) = I(d/σ^ >τ), (1)

where I() is the indicator function. The threshold τ is derived from the Bonferroni adjustment

for multiple tests as (Turkheimer et al., 1999):

τ = Φ-1(1- α/(#(d)*2)),  (2)

where α is the desired probability of at least one false positive in the set (e.g. 0.5, 0,01 etc),

#() is the cardinality of the set (number of non-null coefficients). Given the assumption of

normal noise, the inverse cumulative distribution function  Φ-1 can have the simple form of an

inverse Student t distribution with degrees of freedom equal to those of the estimated error σ^ .

MATERIALS AND METHODS

The Results section of this work is devoted both to validation and to practical illustration of

the method.

Although extensive work has been carried out for validation of WT methods in tomography

(see Turkheimer et al., 1999; 2000; and references therein), it is of interest to verify the

assumptions behind the filters of Eq. 1-2 that are the ones of choice for the present context.

In particular, the use of standard Student-t distributions in Eq. 2 and relative Bonferroni

adjustment are appropriate only if the noise processes of the set W(s,i) strictly match the

independent normal noise conditions in wavelet space described above. By analogy with the

approach of Worsley et al (1993), such correspondence was verified by comparing the

randomization distribution of studentized wavelet coefficients generated from a group of real

images with the expected probability distribution function (p.d.f.).    

Practical application of the method considered two PET datasets where the statistical model

consisted of a GLM that is a common choice for data analysis in neuroimaging. For an

example on the use of PCA the interested reader is referred to the previous article

(Turkheimer et al., 2000).
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The first data-set  is a parametric study of CBF response to word recognition. In this case the

pattern of interest P(s) is the map of the rate of change of CBF toward the specified rate of

words.

The second study considers the measurement of [carbonyl-11C]WAY-100635 binding in brain

in a group of normal controls and in a group of depressed subjects. In this case, it is of

interest to estimate the distribution of the difference in serotonin receptors density between

the two populations.

Details on the modeling of the experimental conditions are given in the following sections.

The software used was written in MATLAB (The Mathworks Inc., Nadick, MA, USA) and

run on an Ultra-Sparc 10 Sun Workstation (SunSystems, Mountain View, CA, USA). The

DWT was implemented as detailed in Turkheimer et al.(1999) using Battle-Lemarie wavelets

(Battle, 1987; Lemarie, 1988). The three-dimensional DWT was used in all studies. Since

DWT requires a data size that has to be a power of 2, original images were all imbedded in a

128x128x128 volume with 2x2x2mm pixel size. The translation invariant DWT used

previously (Turkheimer et al., 1999; 2000) could not be extended to the third dimension since

such approach requires storage space and computational power that is not provided by the

hardware available. However the use of information from all three axes compensated for the

translation invariant approach as the amount of artifacts in the parametric maps was negligible

(see Results section).   In all studies the hard-threshold filter of Eq. 1 was used and the

threshold was derived from Eq. 2 by using a standard t-distribution with appropriate degrees

of freedom derived from the GLM used. The overall error rate in Eq. 2 α=0.05 for both

studies. Wavelet coefficients outside the brain were suppressed.

 

Randomization Study

It is of interest to verify the ability of the wavelet filter of Eq. 2 to control error rate in

wavelet space. This means that under the null hypothesis of all frames Y(s,i) being acquired in

the same condition, the Bonferroni adjusted threshold of Eq. 2 must be able to allow a

proportion of studentized wavelet coefficients d/σ^  equal to the desired error rate α. Such

ability of the procedure may be verified by constructing from the null dataset Y(s,i)  a number

of simulated datasets consisting in two groups of scans made by random assignment of the
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original ones (Worsley et al., 1992). Statistical analysis is then performed on each simulated

data set and in each occasion the occurrence of at least one wavelet coefficient over the

threshold defined in Eq. 2 is recorded as a positive event. After all possible permutations of

Y(s,i) in the two groups have been performed, the number of positive events divided by the

total number of simulations performed is compared to the error rate α.

The null dataset was composed by the scans in activation state of a previously published

protocol (Brett et al., 1998). Such protocol consisted in two conditions; activation and rest.

In all conditions subjects looked at a computer monitor displaying a series of stimuli,

consisting of abstract designs and video clips of four abstract hand gestures.  In the  activation

condition subjects performed one of the four abstract hand gestures with their right hand. In

the rest condition they were told to observe the stimuli without moving, and to let their minds

go blank. Subjects were scanned with an ECAT 953B PET camera (CTI/Siemens, Knoxville,

TN) operating in three dimensional mode.  Approximately 9.2 mCi of H2O15 were injected by

the bolus method for each scan. For each subject, reconstructed images were realigned to the

first scan in the session, and then coregistered to the MNI standard brain (Evans et al 1993)

using SPM99 software (Functional Imaging Laboratory, London, UK). The null set Y(s,i)

consisted in data from 8 subjects, 5 frames each.

The statistical model consisted in a GLM with 8 subjects factors plus 8 subject specific

covariates to normalize each scan to its global counts. Single frames from all subjects were

randomly assigned to 2 groups of 20 scans each and then the statistical analysis in wavelet

space was performed. Error estimates were obtained by pooling residuals from all 40 scans.

Since the set of all possible permutations was too large  (40!/(20!20!) =1.3e+11), such

analysis was repeated for a subset of 1000 random assignments and the number of times that

studentized wavelet coefficients were over prefixed thresholds (0.1, 0.05, 0.01) was recorded.

Parametric Study of CBF Response to Word Recognition

This example illustrates the application of the WT method to a typical parametric study of

CBF response to an experimental condition. By “parametric” it is usually meant that the CBF

is related to stimulus intensity by a linear relationship and it is therefore of interest to

estimate the pattern of such linear rate determined by the experimental setting.  In this
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particular instance data are selected from a previously published study that considered a word

recognition task (Leff et al., 2000). 5 normal subjects  took part. They all had English as their

first language and were right-handed. Subjects viewed single words, presented centrally, at

different rates: 5, 20, 40, 60, and 80 per minute. The stimuli were displayed for 500ms and

were proceeded by a central cross-hair. The cross-hair remained for the whole of the

interstimulus interval. There was also a ‘baseline’ condition: a single word appeared just before

the scan started and was then replaced by a cross for the rest of the scan; this was to ensure that

subjects attended to the screen at all times during the scan. All stimuli were single syllable,

English words (nouns and verbs). Subjects were not given any explicit task related to the

stimuli; instead they were instructed to “read and understand” the words. Each participant had 8

scans, the order of which was randomized within and across subjects. Images were acquired

using an ECAT 935B camera (CTI, Knoxville, TN)  operated in three-dimensional mode.

Arterial samples of the input function were not available and therefore data represent

normalized tissue concentrations following injection of H2
15O. For each subject, reconstructed

images were realigned and then coregistered to the MNI standard brain (Evans et al 1993)

using SPM99 software.

The scans were entered into a design matrix for a GLM with stimulus rate as the covariate of

interest. Subjects effects and subject-specific covariates for global normalization completed the

matrix.

Measuring the effect of Depression on Brain Serotonin Receptors with [11C]WAY-100635

[carbonyl-11C]WAY-100635 is a selective 5-HT1A receptor antagonist that can be used in

conjunction with PET to assess 5-HT1A receptor binding in vivo (Pike et al., 1996). In this

section we re-analyze a previously published data-set (Sargent et al., 2000) where this tracer

was used to measure changes in 5-HT1A receptors in depression. [11C]WAY-100635 scans

were performed on an ECAT 935B camera (CTI, Knoxville, TN) on 15 patients with major

depressive disorder (unmedicated) and 18 healthy volunteer subjects. Binding potential

images were generated from the dynamic scans using a reference tissue model (Gunn et al.,

1998). Images were spatially normalized with SPM-96 software (Functional Imaging

Laboratory, London, UK) into Montreal Neurological Institute stereotactic space using a

[11C]WAY-100635 template as previously described (Meyer et al., 1999). Statistical

modeling was carried out as in the original analysis in order to simplify the comparison

between the results of the WT method and those previously obtained with statistical
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parametric mapping. The GLM contained one only factor (group) where error was estimated

by pooling residuals estimates from both populations.

RESULTS

 Randomization Study

The proportions of false positives at each of the α=0.1, 0.05, 0.01 are shown in Table 1. The

proportions are all close to nominal levels, which suggests that the underlying noise processes

in wavelet space are reasonably well approximated by normal, independent distributions. The

table also reports the error of simulations. This can be estimated by noting that the rejection

of the null hypothesis is a binomial event. Using the Normal approximation to the binomial

distribution, the approximate 90% confidence interval surrounding each rejection frequency F

may be easily computed as F ± 1.645[(F)(1-F)/N]1/2 where N is the number of simulated data-

sets (Noreen, 1989).

TABLE 1:  

Specificity of Wavelet Filter with Bonferroni Correction (± 90% confidence interval)

Nominal Level      α =  0.1       α = 0.05      α=0.01

Estimates From Randomization     0.087 (±0.016)     0.045 (±0.011)    0.012 (±0.005)

Empirically, one can appreciate the concordance of the empirical p.d.f. of wavelet coefficients

with the expected one by looking at Figure 3 where such distribution from one of the

simulated data-sets is compared with the Student t-distribution with 23 degrees of freedom.

Parametric CBF Study.

The estimated pattern of CBF response to stimulus rate is shown in Figure 4 superimposed to

the correspondent MNI space. The main area of activity was in the posterior part of primary

visual cortex ( BA17 or V1), and prestriate cortex (BA18 and 19), bilaterally. From prestriate

cortex, activity ran anteriorly, medially and ventrally, though the occipito-temporal junction and

into the fusiform gyrus (BA 37). This effect was greater on the left. The two other main brain
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regions, which also responded bilaterally, were in the prefrontal cortex: the supplementary

motor area (SMA) and pre-motor cortex; medial and lateral BA6 respectively.

Previous processing in SPM99 (Leff et al., 2000) identified the same areas with smaller

clusters. Bilateral primary and secondary visual cortex and SMA were activated but only the

left pre-motor (lateral BA6) survived correction at the overall error rate α=0.05 (one

resolution only analyzed using a gaussian filter with 10mm full width at half maximum);

activity on the right was present but only at a lower threshold (p=0.001 uncorrected). This

was also true for the bilateral fusiform area.

Measuring the effect of Depression on Brain Serotonin Receptors with [11C]WAY-100635

Results are presented in Figure 5 as binding potential values superimposed on the MNI brain.

In the depressed population, binding potential values were reduced across frontal, temporal

and limbic cortex (maximum difference 0.6 ~ 10% difference from normal values). Anatomical

location of such differences matches the one reported previously using SPM96 (Sargent et al.,

2000). However, such pattern could not be obviously estimated by SPM and the detection of

the areas of significant change of the parameter pattern required a much lower threshold

(p<0.01 uncorrected, images smoothed with a gaussian filter with 8mm full width at half

maximum) with equivalent increase in the error rate α. Figure 5 also shows a greater reduction

of binding in the right orbitofrontal cortex compared to the left side that could not be revealed

in the previous analysis by SPM  but only by region of interest analysis (Sargent et al.,

2000).

DISCUSSION

A new method for the statistical analysis of sets of PET images was introduced. The method

adopts current statistical models for the description of the set but is novel in the use of a

mathematical transform, the wavelet transform, to model the spatial dimension of images. The

use of a transform allows a complete modeling approach that produces spatial estimates of

the parameters of interest under the desired statistical risk.
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This property distinguishes this approach from current methods of analysis. These methods

combine mono-resolution filters with thresholding procedures that control the rate of false

positives; their output are probability maps and no proper estimation of effects is allowed.

 In short, while SPM methods are meant to obtain statistical significance, the wavelet

approach targets the estimation problem and this difference is substantial, as illustrated by

the words of S.C. Pearce (1993): “... Also, there should be no suggestion that statistical

analyses exist to find significant differences. Experiments are conducted in order to find

answers to the questions being asked. Possibly no one doubts that a difference exists. If so, the

task is to estimate its size and not to test for its existence. Further, a difference of means may

be significant but not important or vice versa...”.

The technique was built upon previous work with attention to the noise model; in particular,

the application of the statistical model in wavelet space allowed the method to adapt to the

local noise characteristics of tomographic images. Such an ability combines with the energy

preserving and whitening properties of the transform to yield a theoretical setting that

controls effectively the chosen risk by use of standard statistical procedures. In the

framework of multiple hypothesis testing, that is common in neuroimaging, the control of

false positives may be obtained by a simple Bonferroni correction.

Theoretical expectations were validated in the application section of the paper. In the first

instance the correspondence between the empirical distributions of data and the predicted

ones for a null data-set (all frames in the same condition) was shown. Note that the

verification of assumptions on a single data set, however randomly selected and

representative of the general experimental conditions that data set may be, does not imply

that these assumptions would hold on any other set. Deviations from independence and

normality can be either predicted or easily detected using routine diagnostics. In this case one

may divert from the use of parametric approaches and turn to non-parametric ones. In this

particular instance, permutation methods applied to wavelet coefficients may be appropriate.

Permutation methods for multiple testing are reviewed by Westfall and Young (1993). Also

see Holmes et al (1996) for an application to neuroimaging.

The same considerations regarding the robustness of parametric assumptions in neuroimaging

also apply to current statistical parametric methods with the important difference that the
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methods in wavelet space do not require the additional constraints imposed by gaussian

random field theory such as large number of degrees of freedom and upper and inferior bounds

on the smoothness of the field (Holmes et al., 1996)

Finally, the method was also applied to two other data sets to clarify its use in typical

instances of analysis of neuroimages. The comparison of these results with the ones obtained

previously with statistical parametric mapping showed that the use of wavelet bases, that are

optimal or near-optimal for PET signals (Turkheimer et al., 1999), combined with an adequate

noise model, not only estimates correctly the parametric patterns but also produces a valuable

increase in the detection power.
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Legends
Fig. 1. The scheme describes a common approach for the analysis of neuroimages. Y(s,i)

(here represented as bi-dimensional set of images indexed by i) represents a set of
multiple images acquired in various conditions and all normalized to the same
anatomical reference. The frames Y(s,i) are smoothed with a monoresolution filter
to produce the filtered set YF(s,i). A functional κ() is then applied to produce the

parametric pattern P
^
(s) and correspondent standard error σ^ (s). It is common to

obtain P
^
(s) from the pixel-wise applications of ANOVA or ANCOVA linear

models and to express it as a statistical map where each value of the parameter of
interest is normalized by correspondent values of σ^ (s). These statistical scores are
then inserted in an appropriate cumulative probability distribution function that
allows the control of the rate of false positive in the volume of interest. The output

is a probability map P
^

p(s). Those locations where  P
^

p(s) is under a predefined

threshold are then defined as those anatomical coordinates where pattern P
^
(s) has a

statistically significant value.

Fig. 2. The figure illustrates a solution to the problem of estimation of P
^
(s) with a

controlled statistical risk. All frames Y(s,i) are projected in wavelet space through

the dyadic wavelet transform. A pattern P
^

wt(w) and correspondent error estimate σ^

wt(w) is obtained by application of an appropriate linear statistical model in wavelet

space. A wavelet filter h() is then applied to P
^

wt(w) that shrinks each wavelet
coefficient proportionally to its error by use of a specified statistical risk. The

filtered map  P
^

wt
F (w) is then inverted in image space to produce the final estimate  P

^

F(s).

Fig. 3. Distribution of wavelet scores computed from one of the null-datasets obtained by
random assignment of 40 scans acquired in the same experimental conditions in two
simulated experimental groups of 20. The figure displays the empirical distribution
of studentized wavelet coefficients superimposed with the expected distribution, a
standard Student t-distribution with 23 degrees of freedom.

Fig. 4.   The figure shows the results of the wavelet procedure when applied to the analysis
of a water activation study. The activation study was designed to activate areas that
respond to word recognition. The filtered activation image is displayed in color
overlaid on a gray scale MRI of the MNI standard brain. Values represent the
pattern of the change of blood flow toward the rate of words estimated with an error
rate α = 0.05 over all slices. The left side of the brain is displayed at the left of the
slices. Slices are labeled with their distance in mm from the transverse plane
containing the anterior and posterior commisures. Units are in normalized counts for
unit word rate.

Fig. 5.   Results of the wavelet procedure for the [11C]WAY-100635. The colored pattern,
overlaid on the MIN standard brain, represents the difference in binding potential
(BP units are pure numbers) between the controls and the depressed group. Overall



Turkheimer et al., Statistical modeling of PET images in wavelet space

Legends -2-

error rate for the estimation was  α = 0.05. The left side of the brain is displayed at
the left of the slices. Labels indicate the distance in mm from the transverse plane
containing the anterior and posterior commisures.
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